翻訳と辞書
Words near each other
・ Stanley Stores
・ Stanley Street
・ Stanley Street (Montreal)
・ Stanley Street Quarter
・ Stanley Street, Brisbane
・ Stanley Street, East Sydney
・ Stanley Street, Hong Kong
・ Stanley Street, Liverpool
・ Stanley Street, Singapore
・ Stanley Stroup
・ Stanley Stubbs
・ Stanley Stutz
・ Stanley Super 800
・ Stanley Sutton
・ Stanley Switlik
Stanley symmetric function
・ Stanley T. Adams
・ Stanley T. Tomlinson
・ Stanley T. Walker
・ Stanley Tan
・ Stanley Tanger
・ Stanley Tarshis
・ Stanley Tavern
・ Stanley Temple
・ Stanley Tennenbaum
・ Stanley Thatcher Blake
・ Stanley Theater
・ Stanley Theater (Jersey City)
・ Stanley Theater (Newark, New Jersey)
・ Stanley Theater (Utica, New York)


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Stanley symmetric function : ウィキペディア英語版
Stanley symmetric function
In mathematics and especially in algebraic combinatorics, the Stanley symmetric functions are a family of symmetric polynomials introduced by in his study of the symmetric group of permutations.
Formally, the Stanley symmetric function ''F''''w''(''x''1, ''x''2, ...) indexed by a permutation ''w'' is defined as a sum of certain fundamental quasisymmetric functions. Each summand corresponds to a reduced decomposition of ''w'', that is, to a way of writing ''w'' as a product of a minimal possible number of adjacent transpositions. They were introduced in the course of Stanley's enumeration of the reduced decompositions of permutations, and in particular his proof that the permutation ''w''0 = ''n''(''n'' − 1)...21 (written here in one-line notation) has exactly
: \frac! } \cdot 5^ \cdots (2n - 3)^1}
reduced decompositions. (Here \binom denotes the binomial coefficient ''n''(''n'' − 1)/2 and ! denotes the factorial.)
==Properties==

The Stanley symmetric function ''F''''w'' is homogeneous with degree equal to the number of inversions of ''w''. Unlike other nice families of symmetric functions, the Stanley symmetric functions have many linear dependencies and so do not form a basis of the ring of symmetric functions. When a Stanley symmetric function is expanded in the basis of Schur functions, the coefficients are all non-negative integers.
The Stanley symmetric functions have the property that they are the stable limit of Schubert polynomials
:F_w(x) = \lim_ \mathfrak_(x)
where we treat both sides as formal power series, and take the limit coefficientwise.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Stanley symmetric function」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.